Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 283-289, 2013.
Article in English | WPRIM | ID: wpr-727718

ABSTRACT

This study was designed to evaluate the protective effect of Korean red ginseng (KRG) against ischemia/reperfusion (I/R) injury in isolated guinea pig heart. KRG has been shown to possess various ginsenosides, which are the major components of Panax ginseng. These components are known naturally occurring compounds with beneficial effects and free radical scavenging activity. The heart was induced to ischemia for 60 min, followed by 120 min reperfusion. The hearts were randomly allocated into five groups (n=8 for each group): normal control (N/C), KRG control, I/R control, 250 mg/kg KRG group and 500 mg/kg KRG group. KRG significantly increased hemodynamics parameters such as aortic flow, coronary flow and cardiac output. Moreover, KRG significantly increased left ventricular systolic pressure (LVSP), the maximal rate of contraction (+dP/dtmax) and maximal rate of relaxation (-dP/dtmax). Also, treatment of KRG ameliorated electrocardiographic index such as the QRS, QT and RR intervals. Moreover, KRG significantly suppressed the lactate dehydrogenase, creatine kinase-MB fraction and cardiac troponin I and ameliorated the oxidative stress markers such as malondialdehyde and glutathione. KRG was standardized through ultra performance liquid chromatograph analysis for its major ginsenosides. Taken together, KRG has been shown to prevent cardiac injury by normalizing the biochemical and oxidative stress.


Subject(s)
Animals , Blood Pressure , Cardiac Output , Contracts , Creatine , Electrocardiography , Ginsenosides , Glutathione , Guinea , Guinea Pigs , Heart , Hemodynamics , Ischemia , L-Lactate Dehydrogenase , Malondialdehyde , Myocardial Ischemia , Oxidative Stress , Panax , Relaxation , Reperfusion , Troponin I
2.
The Korean Journal of Physiology and Pharmacology ; : 167-174, 2012.
Article in English | WPRIM | ID: wpr-728105

ABSTRACT

Natural killer (NK) cells provide one of the initial barriers of cellular host defense against pathogens, in particular intracellular pathogens. Because bone marrow-derived hematopoietic stem cells (HSCs), lymphoid protenitors, can give rise to NK cells, NK ontogeny has been considered to be exclusively lymphoid. Here, we show that porcine c-kit+ bone marrow cells (c-kit+ BM cells) develop into NK cells in vitro in the presence of various cytokines [interleukin (IL)-2, IL-7, IL-15, IL-21, stem cell factor (SCF), and fms-like tyrosine kinase-3 ligand (FLT3L)]. Adding hydrocortisone (HDC) and stromal cells greatly increases the frequency of c-kit+ BM cells that give rise to CD2+CD8+ NK cells. Also, intracellular levels of perforin, granzyme B, and NKG2D were determined by RT-PCR and western blotting analysis. It was found that of perforin, granzyme B, and NKG2D levels significantly were increased in cytokine-stimulated c-kit+ BM cells than those of controls. And, we compared the ability of the cytotoxicity of CD2+CD8+ NK cells differentiated by cytokines from c-kit+ BM cells against K562 target cells for 28 days. Cytokines-induced NK cells as effector cells were incubated with K562 cells as target in a ratio of 100:1 for 4 h once a week. In results, CD2+CD8+ NK cells induced by cytokines and stromal cells showed a significantly increased cytotoxicity 21 days later. Whereas, our results indicated that c-kit+ BM cells not pretreated with cytokines have lower levels of cytotoxicity. Taken together, this study suggests that cytokines-induced NK cells from porcine c-kit+ BM cells may be used as adoptive transfer therapy if the known obstacles to xenografting (e.g. immune and non-immune problems) were overcome in the future.


Subject(s)
Adoptive Transfer , Blotting, Western , Bone Marrow , Bone Marrow Cells , Cytokines , Granzymes , Hematopoietic Stem Cells , Hydrocortisone , Interleukin-15 , Interleukin-7 , Interleukins , K562 Cells , Killer Cells, Natural , Perforin , Stem Cell Factor , Stromal Cells , Transplantation, Heterologous , Tyrosine
SELECTION OF CITATIONS
SEARCH DETAIL